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Abstract
Dynamic Contrast-Enhanced MRI (DCE-MRI) is increasingly in use as an investigational
biomarker of response in cancer clinical studies. Proper registration of images acquired at different
time-points is essential for deriving diagnostic information from quantitative pharmacokinetic
analysis of these data. Motion artifacts in the presence of time-varying intensity due to contrast-
enhancement make this registration problem challenging. DCE-MRI of chest and abdominal
lesions is typically performed during sequential breath-holds, which introduces misregistration due
to inconsistent diaphragm positions, and also places constraints on temporal resolution vis-à-vis
free-breathing. In this work, we have employed a computer-generated DCE-MRI phantom to
compare the performance of two published methods, Progressive Principal Component
Registration and Pharmacokinetic Model-Driven Registration, with Sequential Elastic Registration
(SER) to register adjacent time-sample images using a published general-purpose elastic
registration algorithm. In all 3 methods, a 3-D rigid-body registration scheme with a mutual
information similarity measure was used as a pre-processing step. The DCE-MRI phantom images
were mathematically deformed to simulate misregistration which was corrected using the 3
schemes. All 3 schemes were comparably successful in registering large regions of interest (ROIs)
such as muscle, liver, and spleen. SER was superior in retaining tumor volume and shape, and in
registering smaller but important ROIs such as tumor core and tumor rim. The performance of
SER on clinical DCE-MRI datasets is also presented.
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INTRODUCTION
DCE-MRI is emerging as a valuable investigational tool for assessing tumor
microcirculation in cancer patients treated with anti-angiogenic or anti-vascular agents. In
DCE-MRI, images are acquired before, during and after injection of a Gadolinium (Gd)-
based MRI contrast agent. MRI contrast agents approved for clinical use are typically small
molecules which readily extravasate from tumor microvasculature into the extravascular
extracellular space (EES). Pixel-by-pixel pharmacokinetic (PK) analysis of DCE-MRI
contrast agent kinetics can be employed to derive physiologically meaningful model
parameters which contain quantitative information pertaining to tumor microvascular
leakage, vascular volume fraction and perfusion [1,2]. The expectation is that changes in
these PK model parameters can serve as imaging biomarkers of tumor response to anti-
angiogenic and anti-vascular therapies. Such pixel-by-pixel PK analysis of DCE-MR images
is susceptible to misregistration of successive images in the DCE-MRI time-series, as may
arise from inconsistent breath-holding, cardiac pulsatility, and gastrointestinal movement.
Hence, registration of DCE-MR images is often needed prior to performing any PK analysis.
Soft tissues are non-rigid, and rigid registration schemes cannot by themselves provide
pixel-by-pixel registration. Fast and efficient non-rigid registration schemes would be of
great value in this application.

Image registration algorithms can be classified into two categories, feature-based and
intensity-based schemes. Both schemes assume that the anatomical features in the template
and source images are the same. However, in DCE-MRI, the spatially-varying kinetics of
contrast agent (CA) distribution produces time-varying image contrast, with consequent
appearance and disappearance of image features. There is abundant literature on the problem
of registration of DCE-MR images, particularly with respect to breast lesions [3,4,5] rather
than abdominal lesions. An information-theoretic similarity measure called mutual
information has been widely used to register DCE-MR images, since contrast enhancement
prohibits direct comparison of the image intensities. Mutual information has also been
utilized for aligning images acquired using multiple modalities [6]. Early techniques
modeled global motion using affine transformation while the local motion was modeled
using free-form deformation based on B-splines [3]. Recently, Wu et al. [7] have employed
elastic registration using a normalized cross-correlation similarity metric to register DCE-
MR breast images. Hill and co-workers [8] have used iterative dynamic programming,
originally devised to solve the stereo matching problem, to register DCE-MR images of the
breast. Minardi et al. [9] have proposed a 3-D registration method for DCE-MR images of
liver volumes which combines rigid and non-rigid approaches. In this method, a 3-D rigid
registration which maximizes normalized mutual information is followed by a 2-D non-rigid
registration algorithm based on the complex discrete wavelet transform. All the above-
mentioned techniques register post-contrast images to the pre-contrast template. However,
as already stated, the features in DCE-MRI images are time-variant. Recently, Li et al. have
proposed an adaptive bases algorithm for non-rigid co-registration to a common image space
of breast DCE-MRI data sets obtained in separate imaging sessions [10]. Schemes have also
been proposed to perform registration based on a PK model [11,12,13]. Xiaohua et al. [11]
have developed a scheme for simultaneous segmentation and registration which uses K-
means clustering for initial segmentation, followed by fine segmentation based on a PK
model. A Markov random field model is incorporated into the framework to reduce the
effects of random noise. Buonaccorsi and colleagues have proposed an iterative registration
scheme in which the motion-corrupted data is fitted to a PK model to obtain maps of the
model parameters [13]. A synthetic data series is generated from these parameter maps by
forward solving the PK model. This algorithm identifies the registration parameters by
analyzing a small ROI around the tumor using only rigid transformations. These registration
parameters are then applied to the whole image, forming a newly registered data series. The
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generation of synthetic images using PK model fitting is a time-consuming and complex
process. Additionally, the registration may be biased due to incorrect choice of PK model,
which would optimize the initial estimates to incorrect values. A novel scheme based on
principal components analysis (PCA) has been proposed by Melbourne et al. [14]. A
synthetic data series free of motion, but containing the enhancement information, is obtained
by reconstructing the data series using only the first few principal components [14]. A fluid
registration scheme has also been proposed for registering the synthetic data series with the
original data [15]. This scheme, which is referred to as Progressive Principal Component
Registration, is applied iteratively. A potential pitfall of this scheme is that the first iteration
uses only the first principal component for reconstructing the synthetic data. This may lead
to bias in the registration process due to loss of enhancement information contained in the
remaining principal components, thereby affecting subsequent iterations.

Intensity variations between adjacent time-sample images in breath-hold DCE-MRI are
typically relatively small. A general-purpose non-rigid registration algorithm [16] which
explicitly incorporates local changes in brightness and contrast, could thus be expected to
perform well at registering such images. We have compared the performances of sequential
elastic registration (“Sequential Registration”), a pharmacokinetic model-driven non-rigid
registration scheme (“Model-Driven Registration”) [13], and the Progressive Principal
Component Registration scheme (“Principal Components Registration”) [14]. A DCE-MRI
computer-generated phantom data series, created by adapting work reported previously [17],
is used to compare the performance of the three registration schemes. With all 3 schemes, a
3-D rigid-body registration with mutual information similarity metric was used as a pre-
processing step for correcting global registration errors. This step is necessary for reducing
computational time and for improving the accuracy of the general-purpose non-rigid
registration. The best-performing algorithm, in terms of registration accuracy in the DCE-
MRI phantom, was then used to register abdominal and thoracic DCE-MRI data acquired on
human subjects in clinical studies.

METHODS
Pharmacokinetic Modeling

Pixel-by-pixel pharmacokinetic analysis of DCE-MRI data was performed using a two-
compartment model [1,2]. Three physiologically relevant model parameters were fitted for
each pixel, the volume transfer constant (Ktrans), volume fraction of the extravascular
extracellular space (ve), and plasma volume fraction (vp). The model can be expressed in the
following form:

[1]

where Cp(t) is the arterial input function (AIF), and Ct(t) is the volume-averaged
concentration of the CA in a pixel. Ct(t) was calculated assuming a linear dependence of
signal enhancement on the concentration of CA, from the known in vitro longitudinal
relaxivity of the CA. We employed a bi-exponential population-averaged form of the AIF to
estimate Cp(t), as described in equation [2][18]:

[2]

Here, D is the dose per kilogram patient weight, m1 and m2 are the rate constants (min−1)
corresponding to the distribution and clearance phases, respectively, and a1 and a2are their
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amplitudes (kg L−1). The value of D = 0.1 mM kg−1, a1 = 3.69 kg l−1, a2 = 4.77 kg l−1, m1
= 0.144 min−1 and m2 = 0.011 min−1 [18]. Ktrans, vp and ve were estimated by multiple
linear regression after linearizing Eq. [1] to the form described by Murase [19].

DCE-MRI Registration
We implemented three different schemes for registering DCE-MR images, Sequential
Registration, Model-Driven Registration and Principal Components Registration. The
performance of Sequential Registration is compared with the latter two schemes. A flow-
chart depicting the three schemes is given in Figure 1a.

Global Rigid-Body Registration
This pre-processing step corrects for rigid-body misregistration in all three dimensions, and
was applied to all three schemes evaluated in this study. The correction included translation
and rotation in the X & Y dimensions and translation in the Z dimension. Two similarity
measures were used, normalized and regional mutual information [20,21]. The rationale for
including this pre-processing step was two-fold. The first is that the final elastic registration
in all three registration schemes is performed between two 2-D images; a simple rigid-body
registration performed in the X and Y dimensions reduced the run-time of the more complex
elastic registration algorithm. Secondly, while generating the synthetic images using the PK
model and PCA, a set of 2-D images at different time points from the same slice is required.
The rigid-body registration in the Z dimension ensured that the slices selected for generating
the synthetic images closely corresponded to the same physical slice in the Z dimension at
all time samples.

Pharmacokinetic Model-Driven Registration
This scheme is a modification of the algorithm proposed by Buonaccorsi et al. [13], wherein
the PK model given in Eq. [1] controls the DCE-MR image registration. The modification is
that we perform non-rigid registration between the entire synthetic and the original images
as opposed to rigid-body registration of just the tumor region in the original work. The
synthetic data series were produced as follows. After the initial rigid-body registration (pre-
processing) was performed, 2-D images corresponding to a given slice at all the time points
were selected. A pixel-by-pixel fit of the 2-D data series to \Eq. [1] yielded parameter maps
of Ktrans, vp and ve. With these parameter maps as the starting point, and using the AIF
described in Eq. [2], the PK model in Eq. [1] was solved forward to produce a set of
synthetic time-series images corresponding to that particular slice. This synthetic data is
motion-free, but the PK parameter maps from which they were calculated may have been
influenced by motion. At this point, individual 2-D elastic registration [16] was applied
between the original and synthetic data series. The entire procedure was repeated for five
iterations and the iteration with the lowest model fit mean squared error (MSE) was selected
as the registered dataset [13].

Progressive Principal Component Registration
This scheme uses PCA-based synthetic image generation for each slice by the method of
Melbourne and co-workers [14]. Briefly, the mean intensity of each time frame was
subtracted from every pixel in that frame. Next, a covariance matrix between the images at
every time was formed, and from this matrix the eigenvectors were generated. Eigenvectors
were then arranged in descending order of their eigenvalues. The arranged eigenvectors
form the principal components. The Principal Components Registration scheme is based on
the idea that the first few principal components contain signal associated with enhancement,
while the remaining principal components contain signal associated with short-term random
motion [14]. Accordingly, only the first few principal components are used for
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reconstructing the synthetic datasets. Individual 2-D elastic registration [16] was then
performed between the original and the synthetic data series. This entire procedure was
repeated for N-1 iterations, N being the number of time-samples in the DCE-MRI series. In
each iteration, the number of principal components used for reconstructing the synthetic
dataset is equal to the iteration number.

Sequential Elastic Registration
In the clinical data employed in this work, breath-hold DCE-MRI was performed on human
subjects who were asked to follow a “breathe-in, breathe-out, hold” breathing pattern which
typically afforded a temporal resolution of around 16 s per time sample. At this temporal
resolution, it was noticed that intensity changes between adjacent time-sample images were
small enough as to permit sequential elastic registration. In this scheme, adjacent time-
sample images were registered directly using a general purpose elastic registration scheme
[16]. For example, the image at the first time-sample (t0) is used as the template against
which the image at the next time-sample (t1) was registered. The registered t1 image is then
used as the template against which the image at the next time-sample (t2) is registered, and
so on. This process was carried out sequentially through to the final time-sample.

General Purpose Elastic Registration
This step was common to all 3 schemes (Figure 1a). We have employed a general-purpose
elastic registration algorithm developed by Periaswamy and Farid [16]. In this algorithm, the
geometric transformation is a local affine model with a global smoothness constraint.
Intensity variations are explicitly modeled with local changes in brightness and contrast. The
estimate of model parameters at every pixel, and the MSE metric applied to the intensity
values, corrects the nonlinear distortion. A least-squares technique minimizes the error
function which is linear in the model parameters. Then, a nonlinear smoothness constraint is
augmented to the linear error function. An iterative nonlinear minimization scheme uses the
solution of the least square minimization as the initial estimate to minimize the nonlinear
error function. The formulation of the registration algorithm is provided in the Appendix.

Computer-generated Phantom Data
A computer-generated phantom of DCE-MRI images was created by adapting the work
reported previously [17]. High-resolution photographic images were obtained from the
Visible Human Project [22]. These images were hand-segmented into 14 different tissue
types. Mean values of Ktrans, ve, vp, and pre-contrast T1 were assigned to each tissue type
based on values reported in the literature as well as from our own measurements (Table 1).
These 4 parameters were treated as independent, and their values were distributed randomly
among the pixels within a tissue type by assuming a normal distribution with standard
deviation of 5% about the mean. This was done in order to mimic the heterogeneity of
Ktrans, ve, vp, and pre-contrast T1 that would normally exist even within a given tissue type.
Banerji et al. [23] have also reported the development of a computer-generated phantom for
DCE-MRI.

The concentration of CA over time in each pixel was calculated using Eq. [1], the above-
generated maps of Ktrans, ve, vp and pre-contrast T1 (T10), and an AIF modeled using Eq. [2].
The corresponding variation in post-contrast T1 (T1(t)) over time in each pixel was
calculated using Eq. [3]:

[3]
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where r1wa s assumed to be 4.3 mM−1s−1. In turn, the T1(t) values at every pixel over time
were converted to phantom DCE-MRI images using the gradient-echo signal equation:

[4]

where S(t) is the signal intensity in a given pixel, S0 is related to the proton density, α is the
flip angle, and TR is the repetition time. For the purposes of these simulations, it was
assumed that the echo time TE ≪ T2.

DCE-MRI phantom images obtained from the high-resolution photographic images were
down-sampled to the standard clinical resolution of 256 × 256. This was accomplished by
converting the high-resolution phantom DCE-MRI images to k-space values using the 2D
Discrete Fourier Transform, followed by sub-sampling in the k-space domain, and
conversion back to 256 × 256 time-series images by means of 2D Inverse Discrete Fourier
Transform. A second phantom DCE-MRI dataset with noise was created analogously, by
introducing independent zero-mean Gaussian noise to both the real and imaginary
components of k-space prior to sub-sampling in k-space. Since the phantom has 10 times the
resolution of the MR images, it adequately approximates a continuous object, including in-
plane partial volume effects. In order to incorporate through-slice partial volume effects at
clinical imaging resolutions, a 3-D tumor ROI was placed randomly along the slice
direction. Since the DCE-MRI phantom images were created from known “ground truth”
Ktrans, ve and vp maps, they were used to test the performance of the 3 registration schemes.

Clinical DCE-MRI Protocol
DCE-MRI was performed in accordance with local IRB regulations, and informed consent
was obtained from human subjects with advanced solid tumors who were recruited into
ongoing Phase 1 clinical studies of two investigational anti-cancer drugs. Imaging was
performed on either 1.5 T or 3 T MRI scanners. DCE-MRI data were collected by imaging
subjects who repeated a “breathe-in, breathe-out, hold” pattern, with the imaging occurring
during each held-expiration period. DCE-MRI data used in this work are from 4 subjects, 2
of whom were imaged once at baseline and once post-treatment, and 2 who were imaged
once at baseline and twice post-treatment. For the purposes of this work, baseline and post-
treatment scans could be treated as independent, for a total of 10 registration experiments.
16 distinct tumors were chosen for registration, including 1 lung, 1 chest wall, 1 uterine and
13 liver lesions. Primary tumor histologies included leiomyosarcoma, NSCLC, pancreatic,
and colorectal cancers.

Prior to the dynamic portion of the scanning, 4 pre-contrast 3D-GRE images were obtained
at flip angles of 15°, 23°, 30° and 60° so that a pre-contrast T10 map could be calculated in
each case. The dynamic series portion of the imaging comprised of 24–30 3D-GRE images
collected during repeated “held exhalation” breath-holds. This afforded a temporal
resolution of 16–18 seconds in the DCE-MRI series. Typical parameters for the 3D-GRE
imaging were, 12 slices reconstructed to a matrix size of 256 × 256, slice thickness = 5 mm,
TR = 5.0 ms, TE = 2.1 ms, and α=30°. After 1–2 pre-contrast images had been acquired,
gadolinium contrast was injected at a dose of 0.1 mmole/kg at a rate of 4 mL/s using a
power-injector, and chased with a 20 mL saline flush also injected at 4 mL/s.

Quantitative Assessment of Registration Accuracy
We generated a phantom dataset with 5 slices and 30 time points to compare the
performance of the three registration algorithms in terms of registration accuracy. Relative
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to the assumed field-of-view of 34 cm, a 13 mm × 6.5 mm ellipsoidal tumor was introduced
in the middle 3 of 5 slices. A survey of the literature did not reveal previously published
models for defining the motion and deformation observed in sequential breath-hold DCE-
MRI data. Consequently we assessed 3 deformation schemes, including deformation using a
polynomial function, affine deformation in the X and Y directions followed by deformation
using a polynomial function, and random movement of rows and columns in either direction
by one pixel. By visual assessment on a trial-and-error basis, we found deformation by
polynomial functions to be most representative of the misregistration that was evident in our
clinical DCE-MRI datasets. Motion corruption was introduced in the DCE-MRI phantom by
deforming the images in the 3 tumor-containing slices using a forward and reverse
polynomial function to define the spatial relation of the pixels between the actual and the
deformed image. The forward function used in our simulation is given by:

[5]

where y(:,:) is the position of a pixel in the deformed image, x(:,:) is the position of the same
pixel in the actual image and n is the degree of the polynomial function. The transformation
defined by the above function was applied on the actual images and bilinear interpolation
was used to generate the deformed images. The degree of the polynomial function
determined the amount of deformation introduced in the image. For a given slice, the images
at different time-samples were deformed using different degrees between 0.95 and 1.05
generated by a pseudo-random number algorithm. Post-deformation, the images were
visually observed to make sure that the motion deformations were substantial but within the
range observed in clinical data. This noise-free “motion-corrupted” phantom dataset was
registered using the 3 registration schemes.

The above-mentioned steps were also repeated with a second phantom dataset which
incorporated noise (SNR of 50 dB), to test the robustness of the registration schemes. The
addition of noise led to degradation in the pixel-by-pixel PK model fit, and a change in the
ground truth PK parameter values relative to the noise-free phantom dataset.

The framework for quantitatively and qualitatively assessing registration accuracy is
presented in Figure 1b. The first metric was a comparison of the mean PK parameter values
for different ROIs, before and after registration, with the known ground truth parameter
values. For each registration scheme, mean ROI parameter values post-registration were
compared with the ground truth PK parameter values to ascertain the performance of the
registration algorithm. The other two metrics for assessing registration accuracy were the
MSE between the actual and the fitted concentration of CA over time, and the multiple linear
correlation coefficient (CC) values obtained from the PK model fitting, as defined in Eq. [6]
and [8], respectively.

[6]
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[7]

[8]

Here N is the number of time-samples used for the PK model fitting, Yi is the concentration
of the CA over time for the pixel under test, YFIT is the fitted concentration of the CA over
time for the pixel under test, Y is the average concentration of CA for the pixel under test,
MST is mean square total, p is number of coefficients used in the PK model fitting. From Eq.
[6] for MSE, we infer that as the images get registered, the actual pixel intensity values over
time will better correspond to the PK model, thereby reducing the MSE metric. In the case of
CC, as the images get registered, the coefficient values will approach the value of 1,
indicating a better correspondence between the PK model and actual pixel intensity values
over time.

RESULTS
Comparison of the Registration Schemes by PK Values

The DCE-MRI phantom was constructed to depict the abdominal region since the majority
of our clinical data were acquired on human subjects with hepatic lesions. Figure 2 shows
the results for the 3 registration schemes in phantom datasets with and without noise. ROIs
were hand-drawn around muscle, liver, spleen and tumor. In addition, ROIs were drawn
around the tumor rim (comprising a strip approximately 2 pixels wide inside the tumor
perimeter), tumor core (the rest of the tumor), and muscle rim (comprising a strip
approximately 3 to 4 pixels wide along the edge of the muscle). Addition of nonlinear
deformations to the phantom caused significant changes in the PK parameter estimates
relative to the ground truth. In particular, large deviations were noticed in the tumor core,
tumor rim and muscle rim, all of which are comprised of relatively few pixels (about 20
pixels for the tumor rim ROI, 40 pixels for the tumor core, and 40 pixels for the muscle rim).
By comparison, PK parameters in larger ROIs (about 200 pixels) corresponding to muscle,
spleen and liver were less susceptible to change upon deformation. This was to be expected,
since the ROIs selected for muscle, spleen and liver were relatively far from the edges of the
respective organs, such that deformation was less likely to produce “mixing” with a different
tissue.

The average deviations in the PK parameter values in tumor core and tumor rim were as
large as 196% relative to the ground truth values. All three registration schemes
satisfactorily restored the PK values (average deviation of 5.7 % from the ground truth) in
larger ROIs like muscle, spleen and liver; in figure 2 results are shown only for muscle, but
results in liver and spleen followed the same pattern. In the case of tumor core and tumor
rim, the Sequential Registration scheme was able to restore the values closer to the ground
truth (average deviation of 14.7 ± 7.7 % from the ground truth) when compared to Principal
Components Registration (average deviation of 39.5 ± 24.67 % from the ground truth) and
Model-Driven Registration (average deviation of 39.2 ± 15.85 % from the ground truth). For
muscle rim, the average deviation pre-registration was 43.07 ± 17.07 % from the ground
truth. Sequential Registration was able to restore the PK values closer to ground truth
(average deviation of 4.23 ± 2.11 % from the ground truth) when compared to Principal
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Components Registration (average deviation of 33.65 ± 30.45 % from the ground truth) and
Model-Driven Registration (average deviation of 17.82 ± 16.32 % from the ground truth).

Comparison of the Registration Schemes by MSE
All 3 registration schemes showed an improvement in the MSE post-registration against the
pre-registration values (Table 2). A reduction in MSE indicates improved correspondence of
pixel-by-pixel intensity values over time to the PK model. For the phantom dataset without
noise, the MSE values for tumor rim and tumor core showed a greater reduction from the
pre-registered values in the case of Sequential Registration when compared to the other two
schemes. The MSE values for muscle showed a greater reduction from the pre-registered
values in the case of Principal Components Registration when compared to the other two
schemes. However, in the case of the phantom data with noise, Principal Components
Registration returned the lowest MSE values in all the three ROIs. The phantom dataset
contains salt and pepper noise in the DCE-MRI images which is smoothed by the general-
purpose registration algorithm. This algorithm is utilized once per iteration of the three
different registration schemes. Both Principal Components Registration and Model-Driven
Registration are iterative schemes, and with increase in number of iterations, the smoothing
effect in the images increases. Of the 3 registration schemes, Principal Components
Registration had the highest number of iterations for registration, and the salt and pepper
noise was virtually eliminated and led to the lowest MSE. This is followed by Model-Driven
Registration, with 5 iterations. The single-iteration Sequential Registration scheme returned
the highest MSE among the 3 schemes. For the ground truth phantom dataset without noise,
the calculated MSE was not exactly equal to zero. This stems from the manner of generation
of the software phantom, wherein Ktrans, ve and vp were treated as spatially independent
even within a tissue type, and their values distributed randomly among the pixels within a
tissue type by assuming a normal distribution with standard deviation of 5% about the mean.
This meant that, even in the absence of noise, there was a small but non-zero MSE.

Qualitative Comparison of the Registration Schemes
Figure3 depicts a qualitative comparison of the performance of the 3 registration schemes.
All the three registration techniques led to a significant correction of the nonlinear distortion
introduced in the DCE-MRI phantom. It was observed that the shape of the tumor was
distorted following Model-Driven Registration and Principal Components Registration,
leading to appearance of misregistered edges in the difference images (Figures 3g-h), while
the shape of the tumor was better preserved in the case of Sequential Registration (Figure
3i). It should be noted that this distortion artifact in the tumor introduced by Model-Driven
Registration and Principal Components Registration was not reflected in the corresponding
MSE values listed in table 2. This was because the observed distortion in the shape of the
tumor was relatively uniform across all the time-samples in the DCE-MRI series, including
the first time-sample image on which ROIs were drawn around tumor core and tumor rim.
Volume and shape distortions have been noted previously in other non-rigid techniques for
registering DCE-MR images [4, 5]. Rohlfing et al. report that intensity-based registration
algorithms are particularly prone to producing size distortions – in their experience,
reductions in breast lesion size by up to 78% after registration – and have proposed a novel
incompressibility constraint to reduce such distortions [4].

In order to quantify the distortion in tumor shape post-registration, a subsection (about 20 ×
20 pixels) of the image around the tumor was extracted from the ground truth dataset as well
as the data sets after Sequential Registration, Principal Components Registration and Model-
Driven Registration. The mutual information between each of these 3 post-registration
image subsections and the corresponding subsection from the ground truth dataset were
calculated. The mutual information values over all time-points for the three registration
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schemes are depicted in Figure 4a. Registration using Sequential Registration produced the
highest mutual information value, reflecting better preservation of tumor shape, relative to
Principal Components Registration and Model-Driven Registration. The relatively low
mutual information after Principal Components Registration reflects the increase in size of
the tumor following registration that is visible in Figures 3e and 3h. A plot of the variation
of signal intensity over time in the whole tumor ROI from the undistorted, pre-registration
and post-registration phantom datasets is shown in Figure 4b. Agreement of the undistorted
phantom data with data registered using Sequential Registration was generally better than
with data registered using Model-Driven Registration and Principal Components
Registration.

When compared to Principal Components Registration and Model-Driven Registration, for
tumor core and tumor rim, Sequential Registration 1) restored the PK parameter values
closer to the ground truth, 2) had the lowest MSE values in the dataset without noise, 3)
preserved the shape of the tumor post-registration, and 4) better matched signal intensity
over time in the tumor ROI relative to the ground truth dataset. For these reasons, Sequential
Elastic Registration was selected as the preferred algorithm for registration of clinical DCE-
MRI datasets.

Sequential Elastic Registration of Clinical DCE-MRI Data
Since the ground truth PK parameter values are not known for the clinical DCE-MRI data
from human subjects, we have used qualitative analysis and the MSE metric to evaluate the
performance of Sequential Registration in reducing motion errors. We obtained a
quantitative evaluation of Sequential Registration from the difference images given in
Figure 5. Figure 5a shows the anatomical image pre-registration and Figure 5b, c and d
shows the anatomical image post-registration for the initial, middle and the late
enhancement stage in the DCE-MRI series. Figure 5e, f, g and h shows the corresponding
difference images with the image at the previous time-sample in the same DCE series.
Comparing Figure 5e with Figure 5f, g and h, we can observe that motion errors are reduced
at the boundaries of the spleen, tumor, liver, aorta and the skin. The poor registration in the
top right-hand corner of the image (Figure 5g) is due to the presence of gastrointestinal
motion which could not be adequately registered using Sequential Registration.

The reduction in motion errors post-registration can also be seen in plots of the
concentration of the CA over time for different tumor ROIs pre- and post-registration
(figures 6a–b). We can observe that the concentration curve for the CA over time becomes
smoother post-registration in all 3 ROIs, which is indicative of a reduction in misregistration
following Sequential Registration. A smoother concentration curve post-registration leads to
improvement in PK model fitting, which was further captured by reduction in the MSE
metric post-registration.

The results for the MSE for all the 10 clinical datasets (1a–b, 2a–b, 3a–c, 4a–c) are provided
in Figure 7. The MSE for the unregistered (original) data is taken to be 100, and the
corresponding percentage change in MSE for the dataset after Sequential Registration is
depicted. A reduction in the MSE metric was observed in 56 out of 63 ROIs analyzed over
the 10 datasets after Sequential Registration. The results for all the patient datasets except
for 2a, 2b showed considerable reduction in the MSE metric. The tumor ROI in dataset 2a,
2b was very close to the heart, and the resulting blurring of the image degraded the
performance of the general-purpose elastic registration algorithm.

The numerical values for MSE and corresponding change in the PK parameter values
following Sequential Registration are provided in Tables 3a–c for 3 lesions in a particular
patient who was imaged on 3 visits. Sequential Registration produced a significant reduction
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in MSE, which was indicative of improved registration between successive time samples.
There was also a considerable change in the values of the PK parameters post-registration,
which would impact the diagnostic utility of these data. For example, on the baseline scans
of this patient (table 3a), in tumor no. 1 Sequential Registration produced a 17.5% reduction
in mean Ktrans, a 27.4% reduction in mean ve, and a 5.8% increase in mean vp. In tumor no.
2, Sequential Registration produced a 46.7% reduction in mean Ktrans, a 39.8% reduction in
mean ve, and a 45% reduction in mean vp. In tumor no. 3, Sequential Registration produced
an 8.5% increase in mean Ktrans, a 27% increase in mean ve, and a 8.9% reduction in mean
vp in the baseline scan for patient 3

DISCUSSION AND CONCLUSIONS
The simulations were carried out on a 1392-core SGI Altix ICE 8200 high-performance
computing cluster, with each node being a 2.83 GHz quad-core Xeon processor with 2GB
memory per core. The general-purpose elastic registration was the most time-consuming
step in all 3 schemes. For Principal Components Registration and Model-Driven
Registration, the original data series were registered with synthetic data series, thereby
making each individual 2-D registration independent of others. This property could be
exploited to run the individual iterations in parallel. Individual 2-D registrations in
Sequential Registration are dependent on the previous time-sample, and this method is not
parallelizable. However this was compensated by the fact that Sequential Registration is a
single iteration scheme. On our system it took approximately 5 minutes to register a given
source image to a given target image. Thus, in a scenario where the number of available
processors was not limiting, for a DCE-MRI dataset with Ntime -samples, Principal
Components Registration took (N-1)*5 “wall clock” minutes, Model-Driven Registration
took approximately 5*5 “wall clock” minutes (for 5 iterations), and Sequential Registration
took N*5 “wall clock” minutes. For situations in which the number of available computing
nodes is limiting, a comparison of the 3 schemes on the basis of total “CPU minutes”
required to register all the time-samples in a single slice is more useful. In the terms of
“CPU minutes”, Principal Components Registration took N-1 times as long to run, and
Model-Driven Registration took approximately 5 times as long to run, when compared to the
run-time of Sequential Registration.

We have developed a computer-generated DCE-MRI phantom to compare the performance
of Sequential Registration with Principal Components Registration and Model-Driven
Registration. While individualized AIFs are desirable for accurate measurements of
pharmacokinetic parameters from clinical DCE-MRI data, we have utilized a population
AIF in our DCE-MRI phantom. Our rationale is that the best algorithms for registering
entire DCE-MRI images may not necessarily also be the best for registering only arterial
pixels. More restricted and computationally less-demanding algorithms may perform better
in registering only arterial pixels. We have therefore utilized a population AIF, to eliminate
the AIF as a factor that would confound a comparison of the 3 algorithms tested in this
work. There was a superior overall performance of Sequential Registration over the other
two schemes in simulations carried out on the DCE-MRI phantom data series. In small ROIs
such as tumor core and tumor rim, Sequential Registration restored the PK parameter values
closer to the ground truth, had the lowest MSE values in the dataset without noise, preserved
better the post-registration shape of the tumor, and better matched signal intensity over time
in the tumor ROI relative to the ground truth dataset, when compared to Principal
Components Registration and Model-Driven Registration.

Registration experiments were also carried out on 10 different DCE-MRI datasets obtained
from human subjects with abdominal and thoracic lesions. Due to the absence of ground
truth in these clinical datasets, the performance of Sequential Registration was analyzed

Rajaraman et al. Page 11

Magn Reson Imaging. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



using qualitative difference images, and by a comparison of the pre- and post-registration
MSE metric calculated between the actual and fitted concentration of CA over time.
Sequential Registration showed a reduction in the MSE metric in 56 out of the total 63 ROIs
analyzed in the clinical datasets post-registration. The reduction in the MSE metric indicates
that post-registration, concentration values of a voxel over time matches better with the PK
model. In these registration experiments, the subject was assumed to be immobile during the
10 second acquisition of each image. Motion is to be expected even during breath-hold;
cardiac and peristaltic motion effects will always be present, and the subject may
unintentionally move. However, it is reasonable to assume that any motion during the
breath-hold would be small in comparison to the misregistration occurring during the free-
breathing period between image acquisitions. We have therefore focused this work on
compensating for the misregistration between image acquisitions. Motion that occurs during
image acquisition is a secondary effect which would warrant a separate investigation.

Sequential Elastic Registration, being a serial registration scheme, is susceptible to the
propagation of registration errors across time-samples. For example, Skrinjar et al. report
that in a cardiac cine MRI application, reference-based registration was more accurate than
sequential registration [24]. Nonetheless, we have investigated the utility of sequential
registration on the rationale that changes in image intensity between successive time-
samples in breath-hold DCE-MRI are small enough for a general-purpose registration
scheme to be effective. In situations where the assumption of small changes between
sequential images does not hold, the sequential elastic registration method would be prone to
an accumulation of errors and other methods may become more suitable. As these results
indicate, sequential elastic registration is a viable option for registering breath-hold DCE-
MR images, potentially improving the diagnostic value of pharmacokinetic model analysis
of such data.
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Appendix
As explained elsewhere [16], the general purpose elastic registration algorithm borrows its
formulation from the field of motion estimation [25,26,27]. f (x̂, ŷ, t) and f (x̂, ŷ, t–1) denotes
the source and target images respectively. Initially, the geometric transformation contains a
local affine model and then, a global nonlinear smoothness constraint is imposed. The initial
affine model with an explicit change of local contrast and brightness is given by:

[1]

Here, m1, m2, m3, m4 are the linear affine parameters, m5, m6 are the translation parameters
and m7, m8 are parameters related to contrast and brightness, respectively. The error function
uses the MSE metric. A first-order Taylor series expansion approximates the error function,
after which the error function is of the form:

[2]

where:

[3]

[4]

Differentiating the error function with respect to the unknowns, setting the result equal to
zero and solving, we obtain:

[5]

Now, the linear error function is augmented with a nonlinear smoothness constraint:

[6]

Here, (m ⃗) is given by Eq. [2] and (m ⃗) is given by the following equation:

[7]

where λi is a positive constant that controls the relative weight given to the smoothness
constraint on parameter mi. Differentiating with respect to the model parameters, setting it to
zero and solving for m ⃗ minimizes the new error function. The equation becomes highly
intractable to solve analytically and hence, an iterative scheme is used to solve for m ⃗ given
by:
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[8]

where

[9]

is a component-wise average of m ⃗ over a small spatial neighborhood and L is an 8 × 8
diagonal matrix with diagonal elements λi. Eq. [6] gives the initial estimate for m ⃗(0).

A differential multiscale framework corrects for large- and small-scale deformations. In the
multiscale framework, a Gaussian pyramid with T levels is built for both template and
source images with level 0 being the coarse image and level T being the smoothest. The
local affine, contrast and brightness parameters are estimated at level 0. These parameters
warp the source image in the next level of the Gaussian pyramid. A new estimate of the
parameters is computed at the next level. The above-mentioned process repeats through each
level of the pyramid. The transformations at each level of the pyramid accumulate yielding a
single set of final transformation parameters.
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Figure 1.
(a) Sequential Elastic Registration (SER), Progressive Principal Component Registration
(PPCR) and Pharmacokinetic Model-Driven Registration (PMDR) registration schemes; (b)
Scheme for measurement of registration accuracy.
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Figure 2.
Mean values of Ktrans, ve, vp, and correlation coefficients from the PK model fit in the
computer-generated phantom, after nonlinear motion corruption and after registration by
Sequential Elastic Registration (SER), Pharmacokinetic Model-Driven Registration (PMDR)
and Progressive Principal Component Registration (PPCR), compared against the ground
truth parameter values. Left column = results from phantom data without noise, Right
column = phantom data with added noise.
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Figure 3.
Results from the 3 different registration schemes, on an example slice and time-point in the
software DCE-MRI phantom: (a) Ground truth phantom slice (arrow indicates tumor). (b)
Phantom slice after nonlinear deformation. (c) Difference image between a and b, showing
the extent of the deformation. (d) Phantom slice after registration using Pharmacokinetic
Model-Driven Registration. (e) Phantom slice after registration using Progressive Principal
Component Registration. (f) Phantom slice after registration using Sequential Elastic
Registration. (g–i) Absolute difference images between d-f, respectively, and a. The
difference images c, g, h and i are scaled between 0–255 using a common scaling factor for
display purpose.
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Figure 4.
Comparison of Sequential Elastic Registration (SER), Pharmacokinetic Model-Driven
Registration (PMDR) and Progressive Principal Component Registration (PPCR) based on
(a) degree of preservation of tumor shape (b) Signal intensity vs. time for the whole tumor
ROI in the DCE-MRI phantom.
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Figure 5.
Absolute difference images demonstrating successful registration with Sequential Elastic
Registration. (a) unregistered post-contrast image (T1, T2, T3 – tumors, A – Aorta, S –
Spleen). (b), (c) and (d) are registered post-contrast image at the initial, middle and late
enhancement stage respectively. (e), (f), (g) and (h) are the corresponding difference image
with the previous time-sample image in the DCE-MRI series. All the difference images are
displayed with equal scaling for intensity.
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Figure 6.
Comparison of the concentration of CA over time (a) pre-registration, and (b) after
Sequential Elastic Registration, for three tumors from patient dataset 3a.
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Figure 7.
MSE between actual and fitted concentration of the CA to the PK model. Result shows the
values relative to the 100% pre-registration values for all the clinical datasets registered
using Sequential Elastic Registration. Each bar-chart gives the results obtained from the
baseline and post-treatment scans of one patient.
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Table 1

Mean values of Ktrans, ve and vp used for different tissue types in the phantom dataset.

Tissue Type Ktrans (min−1) ve (dimensionless) vp (dimensionless) T1 (ms)

Spleen 0.6 0.3 0.3 1057

Fat 0.03 0.05 0.005 343

Muscle 0.05 0.2 0.005 1130

Stomach 0.05 0.2 0.005 1600

Renal Cortex 0.6 0.1 0.3 1412

Renal Medulla 0.5 0.3 0.1 1412

Gall Bladder 0.09 0.6 0.05 1600

Pancreas 0.09 0.1 0.05 584

Liver 0.09 0.1 0.05 586

Tumor Rim 0.15 0.3 0.04 586

Tumor Core 0.01 0.4 0.0005 1600

Bone 0.001 0.0005 0.0005 549

Cartilage 0.001 0.001 0.0005 1060

Lung 0.02 0.483 0.1218 1000
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Table 3

Pre- and Post- Sequential Elastic Registration Mean PK Parameter Values and MSE for the (a) Baseline Scan
of Patient 3, (b) First Post-Treatment Scan of Patient 3, (c) Second Post-Treatment Scan of Patient 3.

Tumor No. 1 Tumor No. 2 Tumor No. 3

Pre Post Pre Post Pre Post

MSE 6.83E-03 6.69E-03 3.30E-02 1.17E-03 3.51E-03 2.01E-03

Ktrans (min−1) 4.61E-02 3.80E-02 7.36E-02 3.93E-02 4.24E-02 4.60E-02

ve 2.85E-01 2.07E-01 3.09E-01 1.86E-01 2.55E-01 3.24E-01

vp 7.10E-02 7.52E-02 1.34E-01 7.39E-02 1.04E-01 9.45E-02

a

Tumor No. 1 Tumor No. 2 Tumor No. 3

Pre Post Pre Post Pre Post

MSE 3.66E-03 1.64E-03 2.60E-03 1.68E-03 2.10E-03 1.62E-03

Ktrans (min−1) 3.30E-02 3.48E-02 3.64E-02 3.10E-02 3.84E-02 3.86E-02

ve 2.41E-01 2.10E-01 2.91E-01 2.21E-01 2.58E-01 2.55E-01

vp 6.29E-02 6.79E-02 6.81E-02 7.06E-02 6.17E-02 5.93E-02

b

Tumor No. 1 Tumor No. 2 Tumor No. 3

Pre Post Pre Post Pre Post

MSE 5.18E-03 3.90E-03 3.19E-03 1.67E-03 3.52E-03 2.32E-03

Ktrans (min−1) 5.40E-02 6.16E-02 4.38E-02 3.37E-02 5.05E-02 5.30E-02

ve 2.92E-01 2.84E-01 2.30E-01 2.56E-01 2.76E-01 2.50E-01

vp 9.12E-02 1.04E-01 1.03E-01 1.07E-01 8.43E-02 8.65E-02

c
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