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Purpose: To evaluate the feasibility of constructing radiogenomic-
based surrogates of molecular assays (SOMAs) in patients 
with clear-cell renal cell carcinoma (CCRCC) by using 
data extracted from a single computed tomographic (CT) 
image.

Materials and 
Methods:

In this institutional review board approved study, gene 
expression profile data and contrast material–enhanced 
CT images from 70 patients with CCRCC in a training set 
were independently assessed by two radiologists for a set 
of predefined imaging features. A SOMA for a previously 
validated CCRCC-specific supervised principal component 
(SPC) risk score prognostic gene signature was construct-
ed and termed the radiogenomic risk score (RRS). It uses 
the microarray data and a 28-trait image array to evaluate 
each CT image with multiple regression of gene expres-
sion analysis. The predictive power of the RRS SOMA was 
then prospectively validated in an independent dataset to 
confirm its relationship to the SPC gene signature (n = 70) 
and determination of patient outcome (n = 77). Data were 
analyzed by using multivariate linear regression–based 
methods and Cox regression modeling, and significance 
was assessed with receiver operator characteristic curves 
and Kaplan-Meier survival analysis.

Results: Our SOMA faithfully represents the tissue-based molec-
ular assay it models. The RRS scaled with the SPC gene 
signature (R = 0.57, P , .001, classification accuracy 
70.1%, P , .001) and predicted disease-specific survival 
(log rank P , .001). Independent validation confirmed the 
relationship between the RRS and the SPC gene signa-
ture (R = 0.45, P , .001, classification accuracy 68.6%, P 
, .001) and disease-specific survival (log-rank P , .001) 
and that it was independent of stage, grade, and perfor-
mance status (multivariate Cox model P , .05, log-rank 
P , .001).

Conclusion: A SOMA for the CCRCC-specific SPC prognostic gene sig-
nature that is predictive of disease-specific survival and 
independent of stage was constructed and validated, con-
firming that SOMA construction is feasible.
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de novo reconstruction of a predefined 
complex quantitative multigene assay by 
using only data extracted from routine 
computed tomographic (CT) images 
and employing a radiogenomics-based 
approach. We focused on CCRCC and 
the previously validated supervised 
principal component (SPC) risk score, 
a quantitative multigene assay that con-
sists of 259 genes whose expression 
was previously shown to predict dis-
ease-specific survival in patients with 
CCRCC independent of disease stage, 
disease grade, and performance status 
(10). We constructed a SOMA termed 
the radiogenomic risk score (RRS), 
which quantitatively tracks the SPC 
gene signature and was predictive of 
outcome in a training set of 70 patients, 
then validated it in an independent set 
of 70 prospectively collected patients.

Materials and Methods

Patients and Materials
Archived fresh frozen tissue samples, 
clinical data, and results of imaging stud-
ies performed as part of routine clinical 
care were analyzed, with approval by 

capture information about molecular 
characteristics as well as the functional 
organization of cells and tissues. Clin-
ical imaging phenotypes, or radiophe-
notypes, represent the summation of 
complex imaging features that account 
for physiologic and molecular interac-
tions in the context of hierarchically 
organized cells, tissues, and organs. 
Whether radiogenomics can be used 
to systematically construct new quan-
titative or semiquantitative radiophe-
notypes de novo, which track complex 
quantitative molecular phenotypes in 
addition to systems-level phenotypic 
information not afforded by genomics, 
is a fundamental question that remains 
largely unknown. Because radiophe-
notypes capture three-dimensional 
spatial organization and interactions 
between different cellular populations 
and their microenvironments, there is 
information contained in the imaging 
appearance of the tumors that cannot 
be accounted for by the genomic pro-
files alone. Moreover, this is a question 
of great practical importance because 
cross-sectional imaging is the corner-
stone of solid tumor treatment decision 
making, and the ability to measure sur-
rogates of molecular phenotypes with 
noninvasive imaging could greatly im-
pact the decision making process.

We hypothesized that radiogenom-
ics-based surrogates of molecular assays 
(SOMAs) that track targeted molecular 
phenotypes and quantitative molecular 
assays in patients with clear-cell renal 
cell carcinoma (CCRCC) could be de-
signed. To address this challenge, we 
first set out to assess the feasibility of 
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Advances in Knowledge

 n It is possible to systematically 
design noninvasive surrogates of 
molecular assays (SOMAs) that 
bridge the gap between quantita-
tive tissue-based molecular 
assays, clinical imaging findings, 
and clinical phenotypes.

 n A SOMA for a clear-cell renal cell 
carcinoma prognostic multigene 
signature, termed a radioge-
nomic risk score, was trained (n 
= 70) and validated (n = 77) in 
independent data sets and shown 
to predict disease-specific sur-
vival, independent of disease 
stage, disease grade, and perfor-
mance status (multivariate Cox 
model, P , .05 and log-rank P , 
.001).

Implication for Patient Care

 n Complex, multifeature radioge-
nomic biomarkers that efficiently 
describe associations with pre-
specified quantitative molecular 
phenotypes as well as systems-
level phenotypes not accessible 
by genomic-based tests alone can 
be constructed, with a range of 
potential clinical applications, 
including prognostication and 
patient stratification in human 
clinical trials.

A lthough much attention has re-
cently been focused on molecular 
profiling of tumor cells as a means 

to facilitate development of prognostic 
and predictive biomarkers, there are in-
herent limitations to such approaches, 
including the often lack of a coherent 
biologic interpretation of the molecular 
phenotypes and the invasiveness of the 
tissue acquisition process, which also 
limits the frequency and number of 
samples that can be acquired over time 
(1–3). Additionally, although genomic 
profiling is able to account for outcome 
differences that histopathologic analysis 
cannot, it suffers from the intrinsic lim-
itations of tissue sampling common to 
all tissue-based assays that often fails to 
adequately capture the full scope of the 
disease phenotype (3). Furthermore, 
recent studies have revealed that even 
tumor cells with the same genotype can 
have disparate phenotypes (4). Clearly, 
a test that is able to incorporate both 
clinically relevant genomic, as well as 
macroscopic functional and physiologic 
scale phenotypic, information into a 
single noninvasive assay would be of 
tremendous value.

Radiogenomics have been shown to 
be a powerful approach for associating 
genome scale information with macro-
scopic phenotypes captured with nonin-
vasive imaging (5–9). Imaging data can 
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between 2000 and 2007 at Umea Uni-
versity Hospital for whom data on 
clinical outcomes, fresh frozen tissue 
and matched preoperative contrast-
enhanced CT images were available; 
of these 77 patients, fresh frozen tis-
sue were available for gene expression 
analysis in 70. The overall study design 
is shown in Figure 1, and the patient 
characteristics of the training and val-
idation sets are described in Table 1.

Approach
We devised a three-step procedure 
for creating a noninvasive image-
based surrogate for the SPC risk score 
in a training set of 70 patients with 
CCRCC that ranged from stage 1 to 
stage 4 with CT and complementary 
DNA (cDNA) gene expression profil-
ing data (Fig 2). First, we developed a 
gene signature based on the CCRCC-
specific SPC risk score that was pre-
viously developed by Zhao et al (10) 
(Table E1 [online]). Second, we de-
signed a custom library of CT features 
that capture various aspects of tumor 
physiologic and morphologic charac-
teristics, tumor microenvironment, 
and local tumor-parenchyma ecologic 
characteristics, which would enable 
the subsequent construction and iden-
tification of RCC radiophenotypes (Ap-
pendix E1 [online]). The interpreting 
radiologists independently assessed 
each patient’s CT image against the 
entire image feature library (Table E2 
[online]). Finally, to create a stage-in-
dependent image-based predictor sim-
ilar to that of Zhao et al, stage-related 
traits were removed, and multivari-
ate linear regression was performed 
between the top eigenvector of the 
patient-wise gene expression distance 
matrix (which was independently cor-
related with patient outcome) and the 
top stage-independent image traits 
(Appendix E1 [online]), accounting for 
the greatest variance in SPC gene ex-
pression (11). The resultant quantity, 
termed the RRS, defined the relation-
ship between expression of the genes 
of the SPC risk score and the expres-
sion of the composite CT image pheno-
type (radiophenotype) and constituted 
our targeted, noninvasive molecular 

for whom fresh frozen tissue, clinical 
outcomes, and matched preoperative 
diagnostic contrast material–enhanced 
CT images were available (Appendix 
E1 [online]). The validation set con-
sisted of a prospectively collected set 
of 77 consecutive patients with CCRCC 
who underwent radical nephrectomy 

the local institutional review boards of 
Umea University Hospital and in com-
pliance with the Declaration of Helsin-
ki. The training set used to construct 
the RRS consisted of CCRCC tumors 
from 70 consecutive patients treated 
with radical nephrectomy between 1994 
and 2003 at Umea University Hospital 

Figure 1

Figure 1: Diagram shows the study design, construction of the RRS predictor, and analysis workflow of the 
training and testing data sets.

Table 1

Patient Distribution between Training and Validation Test Sets

Characteristic No. in Training Set No. in Validation Set P Value

Sex .77
 Male 39 41 …
 Female 31 36 …
Age (y) 67 (42–85) 65 (34–87) .34
Disease stage .61
 1 21 32 …
 2 17 7 …
 3 11 17 …
 4 21 21 …
Disease grade .60
 1 6 9 …
 2 19 25 …
 3 34 28 …
 4 11 15 …
WHO classification .54
 0 34 30 …
 1 17 28 ...
 2 16 14 …
 3 3 5 …
Median follow-up (mo) 63 (2–156) 71 (1–123) .39
No. disease-specific deaths 32 29 .33

Note.—Except where indicated, data are numbers of patients, and data in parentheses are the range. WHO = World Health 
Organization.
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after the start of ioversol injection at a 
rate of 2–3 mL/sec.

As was previously described, 
35 distinct imaging traits contain-
ing structural, compositional, phys-
iologic, and functional information 
were scored across all tumor samples 
(Table E2 [online]) (5,8,13). Readers 
were trained on an initial set of 15 
independent cases. All images were 
evaluated on a DICOM viewer work-
station with OsiriX 64-bit, software 
(www.osirix-viewer.com) across the 
features in the image feature library 
in the equilibrium (70-second acqui-
sition) and precontrast phases where 
available and necessary. Both the 
training (L.A. and M.D.K., with 4 and 
6 years of experience, respectively) 
and validation (L.A. and R.L.K., each 
with 12 years of experience) sets were 
independently reviewed by two board-
certified radiologists, and Cohen 
kappa statistics were calculated. Im-
aging features were assessed in three 
consecutive sections that spanned the 
largest axial diameter of the tumors. 
Discrepant interpretations were 
subsequently resolved in consensus 
(Table E2 [online]).

Figure 2

Figure 2: Diagram shows the three-step process for constructing an RRS, a targeted semiquantitative image-based assay based on the SPC risk score. First, a 
target phenotype is identified. In our analysis, we use the SPC risk score as the target phenotype to classify patients. Next, a CT feature library is screened against 
patient CT data. Finally, the image phenotype is constructed after the optimum set of imaging features is identified to account for variance of the expression matrix, 
followed by multivariate regression, which is used to create the RRS from the top image traits; the RRS radiophenotype is then validated (11). MRAGE = multivariate 
regression analysis of gene expression.

assay (SOMA). Once the RRS was con-
structed, we performed prospective 
validation of the RRS in an indepen-
dent data set (Appendix E1 [online]).

Gene Expression Profiling
For the training set, gene expression 
profiles of the 70 CCRCCs (performed 
on cDNA microarrays that contained 
over 40 000 cDNA clones and repre-
sented 27 290 unique UniGene clus-
ters) were accessed and filtered to only 
those genes that were most variably 
expressed and well measured (Appen-
dix E1 [online]), a process that was 
previously described (10). The subset 
of transcripts that mapped to the SPC 
signature was subsequently extracted 
for construction of the RRS. For the 
validation set, fresh frozen tissue was 
available for 70 samples. Total RNA 
was isolated from the CCRCC tissue 
samples by using TRIzol (Invitrogen; 
Carlsbad, Calif), and RNA integrity 
was assessed by using a 2100 Bio-
analyzer (Agilent Technologies; Palo 
Alto, Calif). Only specimens with (a) 
more than 1 mg of high-quality total 
RNA determined with the standard 
260/280 ratio of absorbance greater 

than 2.0 per sample and (b) an RNA 
integrity number greater than 6 were 
used. All 70 samples passed this filter-
ing measure. Gene expression profiles 
of the 70 CCRCCs were created on Il-
lumina Human HT-12 v4 Expression 
BeadChip arrays (Illumina, San Diego, 
Calif), which contain 47 231 probes. 
Quantile normalization was performed 
with the lumi R package (12). The ex-
pression arrays were filtered on the 
basis of the set of SPC transcripts that 
mapped to the Illumina probes.

CT and Image Feature Analysis
Diagnostic contrast material–enhanced 
CT images were obtained with single- 
or four-section CT (Light-Speed; GE 
Healthcare, Waukesha, Wis) within 
4 weeks prior to the time of surgery 
by using 5- or 10-mm collimation with 
2.5- or 5-mm reconstruction. Images 
were acquired with either a triphasic 
renal protocol or a single-phase tech-
nique. For the triphasic renal protocol, 
images were obtained 30, 50, and 70 
seconds after the start of intravenous 
injection of ioversol at a rate of 5 mL/
sec. For the single-phase technique, 
images were obtained 60–70 seconds 
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disease-specific deaths for the training 
and validation sets was 32 and 29, re-
spectively. Detailed patient character-
istics are summarized in Table 1.

Gene Expression Profiling

Applying the filtering criteria to the 
training set resulted in a total of 5332 
cDNA elements. From this, 217 tran-
scripts representing 139 genes from 
the SPC signature were identified and 
extracted. A complete list of these tran-
scripts, with Unigene cluster ID, gene 
description, and gene symbol, is shown 
in Table E1 (online).

Development of the RSS
A radiogenomic association map be-
tween 28 well-measured and vari-
ably expressed features on contrast-
enhanced CT images and the gene 
expression patterns of 5332 well-
measured and variably expressed 
transcripts that represented 4825 
unique genes from the 70 CCRCCs 
in the training set was constructed 
and revealed that a large percentage 
(79.0%) of the global gene expression 
program in CCRCC could be recon-
structed from this discrete population 
of image features (Table E2 [online]). 
Next, to define the image analog of 
the SPC gene signature, multivariate 
regression analysis of gene expres-
sion analysis identified a relationship 
between the SPC score and the ex-
pression of four CT features, which 
we termed the RRS. The RRS is a lin-
ear combination of the following four 
stage- and grade-independent imaging 
traits: pattern of tumor necrosis (trait 
17), tumor transition zone (trait 26), 
tumor-parenchyma interaction (trait 
30), and tumor-parenchyma interface 
(trait 31) (Table E2 [online]). The 
multivariate regression equation re-
sulting from multivariate regression 
analysis of gene expression selection 
of the top four traits is given with 
the equation Y = b1 X17 + b2 X26+ b3 
X30+ b4 X31+ b, where b = 20.187,  
b1 = 0.03591, X17 = trait 17, b2 = 0.113, 
X26 = trait 26, b3 = 20.124, X30 = trait 
30, b4 = 20.08016, and X31 = trait 31 
(corrected analysis of variance P value 
, .001) (Fig 3).

accounted for the greatest variance (11). 
To determine that this model was not 
randomly identified as the best model, 
bootstrap analysis was performed with 
100 000 resamples (P , .001).

Receiver Operator Characteristic Analysis
To evaluate the ability of the RRS to 
predict the SPC risk score, receiver 
operating characteristic (ROC) curve 
analysis was performed to identify 
the optimal threshold for maximizing 
sensitivity and specificity. The train-
ing set was divided into two groups 
on the basis of the cutoff from ROC 
curve analysis: low and high risk score 
groups. The patients in the validation 
set were similarly classified into low 
and high risk score groups on the ba-
sis of their risk scores by using the 
cutoff established in the training set. 
Survival times of the subgroups in the 
training and independent validation 
sets were compared by using Kaplan-
Meier survival analysis.

Statistical Analysis
Principal component and Pearson cor-
relation analysis were performed with 
Matlab (MathWorks, Natick, Mass) and 
R (http://www.r-project.org/) software. 
Multivariate linear regression, Cox re-
gression modeling, diagnostic accuracy, 
Cohen kappa, Kaplan-Meier survival 
analysis with log rank tests, and ROC 
curve analysis were performed with R, 
Matlab, Statistica (StatSoft, Tulsa, Okla), 
and Python (www.python.org) software. 
Two-way average-linkage hierarchical 
clustering of expression profile data was 
applied and visualized with Cluster 3.0 
(http://bonsai.hgc.jp/~mdehoon/soft-
ware/cluster/) and TreeView (http://
jtreeview.sourceforge.net/).

Results

Patient Characteristics
No significant differences were found 
between the training and validation 
sets with respect to patient sex, pa-
tient age, disease stage, disease grade, 
WHO performance status, follow-up 
time, and disease-specific death. At 
the time of analysis, the number of 

RSS Construction
As was previously described, a global 
map that linked image features to 
transcript expression levels was cre-
ated (5). Briefly, we identified sets of 
transcripts that significantly correlated 
with each imaging trait (hereafter re-
ferred to as trait-associated genes). 
Thus, we evaluated the correlation of 
the log2 (Cy5/Cy3) expression ratio 
for every cDNA clone with each im-
aging trait by using a Spearman rank 
correlation coefficient. To assess signif-
icance and control for multiple hypo-
thesis testing, we generated 3000 ran-
dom permutations of the imaging trait 
values and recalculated the correlation 
coefficient to each cDNA element. The 
distributions generated from these cal-
culations were used to determine cor-
relation coefficients corresponding to 
P , .05. All cDNA elements with ab-
solute correlation coefficients greater 
than this cut-off were included in the 
trait-associated gene sets.

Next, for consistency with the study 
by Zhao et al (10), the RRS, a semiquan-
titative radiogenomic surrogate for the 
SPC gene signature, was constructed 
from the 70 CCRCCs in the training set 
by using the 28 stage-independent im-
age features after seven stage-dependent 
traits were removed from the original 35 
image feature library (Table E1 [online]). 
Similar to Zhao et al, the gene expression 
matrix was populated with the genes 
whose absolute Cox score exceeded 
the threshold as previously established. 
Survival analysis was performed on the 
first principal component to confirm the 
prognostic value of the SPC gene signa-
ture as previously described by Zhao et 
al (10). Multivariate regression analysis 
of gene expression data was used to se-
lect the top imaging traits (11). As was 
previously described, the patient-wise 
gene expression distance matrix was cal-
culated by using the Pearson correlation 
coefficient and the equation dij = [2*(1-
rij)]

1/2 for each rij entry in the n 3 n cor-
relation matrix (for n patients) (11). The 
RRS was then calculated by performing 
multivariate linear regression between 
the top eigenvector of the patient-wise 
gene expression distance matrix and by 
using the four top imaging traits that 
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To further validate our image-based 
assay, we predicted the relationship be-
tween the radiogenomic risk score and 
the SPC risk score classification in an 
independent set of 70 prospectively col-
lected patients with CCRCC. The corre-
lation between the SPC risk score genes 
and the RRS persisted in the validation 
set (R = 0.45, P , .001) despite the fact 
that the SPC risk score used in the train-
ing set was derived from a custom mi-
croarray that contained probe sets that 
were not present in the newer generation 
microarray platform used in the valida-
tion set. These patients were also evalu-
ated against clinical outcome and placed 
into either a high or low RRS group by 
using the threshold established in the 
training data (n = 77). Survival analysis 
confirmed that the high RRS group had 
significantly lower disease-specific sur-
vival rates than did the low RRS group 
(P , .001), with a median survival time 
of 40 months for the low RRS group and 
more than 120 months for the high low 

than the low RRS group on the basis 
of Kaplan-Meier estimates (P , .001), 
with a median survival of 32 months in 
the high RRS group versus 150 months 
in the low RRS group (Fig 4, A).  
Further, classification of patients into 
“good” and “poor” SPC risk score prog-
nosis groups revealed a comparable 
outcome profile (P = .0263) (Fig 4, B). 
Comparison of the observed risk score 
predictor against permuted samples 
(105 permutations) confirmed that the 
strong relationship between risk score 
and both the SPC gene signature (P , 
.001) and overall survival (P , .01) was 
unlikely due to chance. Finally, the RRS 
classification also strongly mirrored 
the classification of SPC risk score pa-
tients (accuracy, 70.1%; P , .001). In 
total, these findings confirmed that our 
image-based assay was reflective of the 
tissue-based assay it targeted, tracking 
both the expression of the SPC risk 
score genes and the SPC risk score and 
its classification of samples (2).

RRS Tracks SPC Gene Signature and 
Predicts Outcome in Patients with CCRCC

The RRS significantly correlated with 
expression of the SPC risk score gene 
signature (R = 0.57, P , .001), con-
firming its relationship to this quantita-
tive multigene assay (Fig E1 [online]). 
ROC analysis identified the optimal 
classification of patients into risk groups 
(high vs low) at a RRS cut-off value of 
20.01318 (Fig E2 [online]). In addition, 
although the RRS was derived from 139 
of 259 of the most variably expressed 
SPC risk score genes and, thus, was not 
devised to explicitly track the full 259 
genes of the nominal SPC risk score 
(a weighted composite of the expres-
sion levels of all 340 component tran-
scripts), we found that the RRS signifi-
cantly correlated with the nominal SPC 
risk score, as well (R = 0.48, P , .001), 
confirming that our assay tracks the 
core SPC risk score (10). The high RRS 
group had significantly worse survival 

Figure 3

Figure 3: Definition of the RRS phenotype. CT images show the four imaging traits that constitute the RRS, with examples of high (red) and 
low (green) scores for each imaging feature, and the composite high- (yellow) and low- (blue) risk score phenotype. From the left, trait 17 (first 
column) assesses the quartile percentage of tumor necrosis (the low RRS example image shows a 3.2-cm exophytic mass with a minimal 
amount of central necrosis); trait 26 (second column) assesses a sharp (arrows) versus infiltrating transition zone between tumor and renal 
parenchymal tissue; trait 30 (third column) assesses the presence or absence of a discrete rim of enhancement circumscribing the tumor 
(arrows); and trait 31 (fourth column) assesses the presence or absence of a hypoattenuating rim circumscribing the tumor (arrows). For each 
trait, the linear equation and coefficients that define the RRS are listed, where b = 20.187, b

1
 = 0.03591, X

17
 = trait 17, b

2
 = 0.113, X

26
 = 

trait 26, b
3
 = 20.124, X

30
 = trait 30, b

4
 = 20.08016, X

31
 = trait 31, and y = RRS.
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validation set (lower limit, 0.6915; upper 
limit, 0.9469; and seven discrepant cases 
that were resolved in consensus) (14).

Discussion

In summary, we demonstrate that tar-
geted noninvasive image-based molec-
ular assays (SOMA) that track target-
ed quantitative molecular phenotypes 

stage, tumor grade, and performance 
status (Cox model likelihood ratio test, 
P , .03, hazard ratio, 1.57) (Table 2).  
There was substantial interobserver 
agreement of the RRS as measured by 
Cohen kappa statistic, with 0.7645 6 
0.0784 for the training set (lower limit, 
0.6109; upper limit, 0.9181; and eight 
discrepant cases that were resolved in 
consensus) and 0.8192 6 0.0652 for the 

RRS group (Fig 4, C). Survival analysis 
performed on the basis of SPC risk score 
in the validation set also revealed a sim-
ilar outcome profile (Fig 4, D). Again, 
RRS classification strongly mirrored that 
of SPC risk score (accuracy, 68.6%; P 
, .001). Finally, a multivariate Cox pro-
portional hazards model demonstrated 
that the risk score, similar to the SPC 
risk score, was independent of tumor 

Figure 4

Figure 4: Characteristics of the RRS. A, Kaplan-Meier curves for disease-specific survival in the training set show the high (blue 
line) and low (yellow line) RRS groups (P = .00147). B, Kaplan-Meier curves for disease-specific survival in the training set show the 
good (green line) and poor (red line) prognosis SPC risk score (P = .0263). C, Kaplan-Meier curves for disease-specific survival in the 
validation set show the probability of disease-specific survival for the high (blue line) and low (yellow line) RRS groups (P = .00024). 
D, Kaplan-Meier curves for disease-specific survival in the validation set show the probability of disease-specific survival for the good 
(green line) and poor (red line) SPC groups (P = .00006).
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sufficient sensitivity to detect differ-
ences in molecular profiles at an in-
tratumoral level, further studies are 
needed to evaluate the sensitivity and 
capabilities of imaging technologies 
to detect any causal links between in-
tratumoral heterogeneity and tumor 
phenotype (5,24). In the future, when 
single cell isolation studies become 
technically feasible and cost effective, 
we expect that there will be increased 
sensitivity and specificity of genomic 
biomarkers and a potential transition 
from inter- to intratumoral-based ge-
nomic tests; in which case, the ap-
proach proposed herein should still be 
applicable with the parallel progres-
sion from intertumoral-based SOMAs 
to more spatially resolved intratu-
moral-based SOMAs. Additionally, 
although “expert level” qualitative or 
semiquantitative imaging traits remain 
the reference standard for identifying 
complex features and subtyping differ-
ent tumors in the clinic, as computer 
vision and quantitative feature extrac-
tion methodologies improve and be-
come validated and standardized, we 
expect automated feature extraction 
will further improve the efficiency of 
the radiogenomic assay workflow.

Although the physiologic and bio-
logic interpretability of the RRS is a 
favorable strength of this radiogenomic 
biomarker, a potential limitation of this 
study is that the current implementa-
tion of image feature detection is not 
automated. While it would be ideal to 
capture all features with automated 
processes and almost completely re-
move human interaction, it is impor-
tant to remember that, first, the vast 
majority of clinical radiologic inter-
pretation is still held to the standard 
of the human eye, and, second, cur-
rent automated image analysis proce-
dures are still relatively limited in their 
ability to capture complex patterns be-
yond standard physiologic or textural 
features and clearly lag human pattern 
recognition capabilities. Additionally, 
the majority of published radiogenom-
ic studies to date have relied on human 
experts for feature scoring, having 
demonstrated strong correlation with 
underlying genetic signatures, strong 

results are encouraging and speak to 
the robustness of both the RRS and the 
approach in general. A number of prog-
nostic gene signatures have been iden-
tified in renal cell cancer; however, we 
focused on the SPC risk score for proof 
of concept because of its strong similar-
ity to prognostic quantitative multigene 
assays that were recently developed for 
clinical use, thus approximating a po-
tential real-world application (1,17,18). 
For example, a number of quantitative 
multigene assays with prognostic and 
predictive components are in clinical 
use in patients with other tumor types, 
such as breast and prostate cancer, for 
whom images are routinely obtained 
for pretreatment evaluation (18–20). 
These and other similar tests suffer 
from some of the limitations associated 
with many tissue-based genomic tests 
in general, such as cost and morbidity 
associated with invasive procedures 
for tissue acquisition and are ideal for 
translation into SOMAs.

While recent work highlights the 
potential importance of intra- and in-
tertumoral genomic heterogeneity in 
tissue samples, its overall impact on 
clinical practice remains to be deter-
mined because the current standard 
clinical practices and Clinical Labo-
ratory Improvement Amendments–
certified genomic tests are based on 
total tissue samples from a single le-
sion, similar to the radiogenomic risk 
score (3,20–22). Further, studies have 
shown that aggregate expression levels 
of RNA from a single site in the pri-
mary tumor alone are powerful predic-
tors of eventual metastasis and death 
(23). Although there is evidence that 
radiogenomic approaches can provide 

and assays can be designed in patients 
with CCRCC. Recently, Karlo et al (15) 
explored associations between nucleo-
tide variations in five genes and eight 
CT features in patients with renal cell 
carcinoma. In our study, we sought to 
construct a complex, multifeature imag-
ing predictor by using a multigene pre-
dictive gene expression signature (SPC 
risk score). We prospectively designed 
a semiquantitative noninvasive image 
assay constructed from an initial screen 
of a library of CT features against a 
previously established prognostic quan-
titative multigene assay in patients 
with CCRCC. Similar to the SPC risk 
score molecular phenotype it targets, 
the RRS SOMA expresses prognostic 
power and is independent of disease 
stage, WHO classification, and disease 
grade, and it maintains high sample 
classification accuracy. Importantly, 
the RRS was validated in an indepen-
dent cohort of patients who we pro-
spectively collected and molecularly 
profiled, where it continued to demon-
strate significant association with the 
SPC risk score, strong classification 
accuracy, and an ability to stratify pa-
tients on the basis of disease-specific 
death independent of stage, WHO 
classification, and disease grade (16).

The SOMA concept is generalizable 
and, in principle, agnostic of disease 
type and imaging modality (eg, posi-
tron emission tomography, magnetic 
resonance imaging, CT, and optical 
imaging) and applicable to different 
molecular phenotype classes (eg, copy 
number variations, gene expression 
signatures, and metabolic phenotypes). 
Although we focus on renal cell carci-
noma, the strength and breadth of our 

Table 2

Multivariate Cox Survival Regression (Validation Cohort)

Predictor Variable Univariate P Value Multivariate P Value Multivariate HR

RRS .0001 .04 3.32
Disease stage ,.001 .01 1.87
WHO performance .001 .02 1.78
Disease grade .0004 .01 1.77

Note.—HR = hazard ratio.
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and tracking diseases, with exciting 
future applications for renal cell carci-
noma, as well as potential applications 
to other diseases. This approach for 
radiogenomic biomarker identification 
further ameliorates the tissue burden 
of strictly tissue-based biomarkers 
and may help defray the cost and time 
associated with repeated tissue acqui-
sition. In the future, such limitations 
could potentially be ameliorated with 
a SOMA-based approach, in which tar-
get molecular or clinical phenotypes 
can be rapidly designed and screened 
in silico in actual human data sets.
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